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Abstract: The a'-phenylsulfonyl derivative of E-3-penten-2-one (3) undergoes predominant 
y-alkylation with a variety of alkyl iodides when first converted-into a trilithiated 
intermediate with excess lithium diisopropylamide in tetrahydrofuran-hexane. 

The thermodynamic dienolates of a,B-unsaturated aldehydes and ketones undergo inter- 

molecular alkylation mainly at the a-position, even when steric hindrance is present.' Some 

time ago, we reported an approach for directing such alkylations to the v-position.2 This 

entailed temporary placement of a phenylsulfonyl substituent at Cy of a,B-unsaturated ketones, 

which led to "cross-bred" ally1 anions that gave varying degrees of Y-regioselectivity 

depending on substrate and alkyl halide structure. 132 Useful y/cc ratios for most alkyl 

halides other than methyl iodide were found only in substrates where steric hindrance at 

Ccc compensated for the counter-productive bulk of the y-sulfone substituent. Similar results 

were obtained in step-wise annulations of monoanions from enone-sulfones 1 and 2 with 

a,w-dihalides, using sodium hydride in N,N-dimethylformamide,3 e.g. 

*so;d+ph so, &J+ g?tH 
1 2 SWh , q S02Ph 

Excellent yields of y,y-annulation products (three- to six-membered rings) were obtained 

with 1, in part due to the gem-dimethyl steric effect near the a-position. 
3 

As before,' 

v-selectivity fell off sharply when the a- and y-positions of dienolate nucleophile are 

sterically more equivalent (as in 2). Clearly, a different strategy for y-selective alkylation 

of a,@unsaturated ketones was needed, in particular one which would not increase steric 

hindrance at Cy while modifying substrate behavior. 

cc,@-Unsaturated carboxylic acids4 and secondary amides5 undergo Y-alkylation via their - 

dianions and one can anticipate that similar polyionized species could also be generated 
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from a'-phenylsulfonyl enones. Accordingly, we assembled6a the keto-sulfone 3, derivable 

from E-3-penten-2-one, and carried out stepwise ionizations with LDA, followed by ethyl 

iodide (15 min, 0'). Scheme I summarizes the results. 
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The substantial acidity of B-ketosulfones' assures that enolate ?a_ is first generated, 

presumably as the E-isomer.* 

Cz, or C1.O. 

Additional ionization of 3a was possible a priori at either -.. 
When 3 was treated with ca. 2.5 eq of LDA, followed by C2H51 (0”/15 min) only 

4 was isolated, showing that the a',a'-dianion 3b had been produced in kinetic preference 
9a,ll 

to a',y. Most significantly, when 3 was exposed to 4-5 eqs of LDA (yellow+burgundy red 

solution), followed by 2 eqs of C2H51, y-ethylated products 5 and 6 (the latter from 

further alkylation of the a',u'-dianion of 5) were isolated 
66 

in high yield (42% and 30%, 

respectively). Thus trianion & can be generated and monoalkylated regioselectively, 

especially without surplus alkylating agent (see experimental procedure). With this 

encouraging development, a variety of other alkyl iodides (l-l.5 eqs) were reacted with 

3c, giving comparable results. Compounds 7-9 were formed in >5:1 excess over the corre- -- 

sponding a-alkylation products (combined yields ca. 40-65%). 
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Such product mixtures were separated chromatographically (on silica gel with 1:l hexane- 

ethyl acetate or ether), with the y-alkylation products eluting after the a-isomers. 

Compounds 5-10 uniformly displayed split conjugated carbonyl bands in their IR spectra at 

$1695-1675 cm-' (f or s-cis and s-trans conformers), whereas the cr-isomers showed unconjugated 

carbonyl bands at ~1715 cm 
-1 . Proton NMR spectra (illustrated in full for isomers 10 and 11) - 

of y-alkylation products were as expected for E-enones (Jvinyl 215 Hz), with the B-vinyl 

proton appearing as a doublet of triplets (J 6,T 17 Hz), instead of overlapping quartets 

(in 3). With isopropyl iodide, the ratio of -I(! to U_ was only 2:l. Surprisingly, when ethyl, 

n-butyl and cyclopropylcarbinyl bromides were reacted with 3c, the y-alkylation products (K-S 

above) were minor products and a-alkylation prevailed (24:lj: This remarkable leaving group 

effect on regioselectivity is not yet understood. The hypothesis that alkyl iodides react 

via a single electron transfer (SET) mechanism 13 - seems weakened by noting the retention of 

the cyclopropylcarbinyl residue in product 8 when 3: was alkylated with cyclopropylcarbinyl 

iodide. Ring opening of cyclopropylcarbinyl free radicals is a very facile process, 14a but 

geminate coupling might be even faster. 14b 

Several exploratory sequences carried out with 5 show that such y-alkylated products can 

be converted back to desulfonylated a,6-unsaturated ketones and aldehydes. 15,16 

rv 

Reagents: a)(CH20H)2, p-TSA; b) Li/NH3; c) acetone, H+; d) NaBH4/CeC13, CH30H; 
e) Kot-Bu/t-BuOH, 18crown-6. 

Thus, the overall process of y-alkylation is formally completed. 

We are attempting to optimize the y-alkylation of 3 and related systems with alkyl 

iodides, and seeking information on scope, 
17 

limitations and mechanism. These studies will 

be reported in due course. 

A typical experimental procedure follows: 
Fifty milligrams (0.223 mmols) of 2 in 1 ml THF was added to 1.12 mm01 of freshly-prepared 
LDA in THF-hexane at -78' under N2. After 2 h ethyl iodide (0.02 mL, 0.245 mmol) was added 
at 0" and 15 min later the reaction mixture was quenched into 10% HCl, followed by standard 
workup. The crude, oily product (44 mg) was chromatographed over silica gel (eluting with 
hexane to 1:1 ether-hexane), affording 6 mg (13%) of y,a'-diethylation product 6 (R 0.48), 
MS (C$ m/e 281 (M +1), and 19 mg ($f%), 
253 ( +l); IR (neat) 1695, 1080 cm 

of y-ethylation product 5 (Rf 0.40), MS-(CIf m/e 
; H NMR (CDC13) 6 7.9-7.4 T5H), 6.9 (lH, dt, J=l5,7), 

6.2 (lH, d, J=l5), 2.2 (2H, q, J=7), 1.6-0.8 (5 H). In addition, 12 mg of 2 was recovered. 
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